Liquids

Chapter 13

(a)

(b)

(c)

Gases	Liquids	Solids
Variable shape and volume	Variable shape, fixed volume	Fixed shape and volume
May expand or compress	May flow, not compressible	Non-compressible crystalline solids
Low densities	High density	High density
Mix to form homogeneous mixtures	Mix if soluble	Do not mix by diffusion

Intermolecular Forces

- Forces holding one molecule to another in a substance.
- van der Waals forces
- Several types ion-dipole, dipole-dipole, dipole-induced dipole and London dispersion forces
- Hydrogen bonding

Polar Molecules

• Dipole - A molecule such as HF which has a positive and a negative end. This dipolar character is often represented by an arrow pointing towards the negative charge.

- Dipole moments the measure of the net molecular polarity
 - Measured in units of Debyes (D) = Qr (charge x separation)

Chlorine is at negative end of bond dipole. Carbon is at positive end of bond dipole. H

Chloromethane, CH₃Cl

Ammonia ($\mu = 1.47 \text{ D}$)

H

Η

Water ($\mu = 1.85 \text{ D}$)

Polar bonds Non-polar molecules

Dipole – Dipole forces or Polar - Polar interactions

London forces

Induced dipole – induced dipole

or

Nonpolar - Nonpolar interactions

Hydrogen Bonds

• A special type of polar interaction between a hydrogen atom bonded to an electronegative element and another electronegative element.

Active protein

Inactive protein

How do intermolecular forces affect molecular properties?

Solubility

Like dissolves Like

Viscosity

• resistance to flow

• If a liquid has strong intermolecular interactions then particles will not flow past each other easily and viscosity will be high.

Table 13.2Viscosity of S	Selected Liquids		
Liquid	Approximate	Intermolecular	Viscosity
	Molar Mass	Attraction	at 20°C*
water	18 g/mol	strong	1.00
propionic acid, C ₂ H ₅ COOH	74 g/mol	strong	1.10
butyl alcohol, C ₄ H ₉ OH	74 g/mol	strong	2.95
propyl chloride, C ₃ H ₇ Cl	79 g/mol	weak	0.35
ethyl ether, C ₂ H ₅ OC ₂ H ₅	74 g/mol	weak	0.23

*Values are expressed in centipoise, a common unit of viscosity. Copyright © 2004 Pearson Prentice Hall, Inc.

Surface Tension

- tendency to minimize surface area
- Adhesion Forces that bind a substance to a surface
- Cohesion Forces that bind a substance to itself

Table 13.3 Surface Tension of Selected Liquids			
Liquid	Approximate Molar Mass	Intermolecular Attraction	Surface Tension at 20°C*
water	18 g/mol	strong	70
propionic acid, C ₂ H ₅ COOH	74 g/mol	strong	27
butyl alcohol, C ₄ H ₉ OH	74 g/mol	strong	25
propyl chloride, C ₃ H ₇ Cl	79 g/mol	weak	18
ethyl ether, $C_2H_5OC_2H_5$	74 g/mol	weak	17

*Values are expressed in dynes per square centimeter, a common unit of surface tension. Copyright © 2004 Pearson Prentice Hall, Inc.

Vapor Pressure

The pressure exerted by a vapor in equilibrium with its liquid phase.

Table 13.1 Vapor Pressure of Selected Liquids			
Liquid	Approximate Molar Mass	Intermolecular Attraction	Vapor Pressure at 20°C
water	18 g/mol	strong	18 mm Hg
propionic acid, C ₂ H ₅ COOH	74 g/mol	strong	5 mm Hg
butyl alcohol, C ₄ H ₉ OH	74 g/mol	strong	6 mm Hg
propyl chloride, C ₃ H ₇ Cl	79 g/mol	weak	300 mm Hg
ethyl ether, $C_2H_5OC_2H_5$	74 g/mol	weak	450 mm Hg

Copyright © 2004 Pearson Prentice Hall, Inc.

Boiling point

• the temperature at which the vapor pressure of a liquid is equal to the atmospheric pressure.

- Crystalline solid atoms, ions, or molecules lie in an orderly array
 - typically have flat well defined surfaces called faces.

• Amorphous solid – atoms or molecules lie in random jumble.

Carbon allotropes

Table 13.4 General Properties of Crystalline Solids			
Type of Solid	General Properties	Examples	
ionic	high melting point, hard, brittle, at least slightly soluble in water, conductor of electricity when melted or in solution	NaCl, CaCO ₃ , MgSO ₄	
molecular	low melting point, generally insoluble in water, nonconductor of electricity	S ₈ , C ₁₀ H ₈ , C ₆ H ₁₂ O ₆	
metallic	low to high melting point, malleable, ductile, conductor of electricity, insoluble in most solvents	Fe, Ag, Au	

Copyright © 2004 Pearson Prentice Hall, Inc.

Vaporization Melting Sublimation Liquid to gas transition Solid to liquid transition Solid to gas transition

Condensation Freezing Deposition Gas to liquid transition liquid to solid transition Gas to solid transition

Host addad

Water

- colorless, odorless, tasteless, liquid at ordinary temperatures
- only inorganic compound occurring naturally as a liquid
- composes ~65% of mass of living organisms
- excellent solvent for many things
- abnormally high boiling and melting point
- ice is less dense than water (it floats)

Copyright © 2004 Pearson Prentice Hall, Inc.

Liquid and solid water

Copyright © 2004 Pearson Prentice Hall, Inc.

Phase diagram for H_2O

Water purification

- <u>Hard water</u> -- Contains Ca⁺², Mg⁺², Fe⁺³ and other minerals.
- <u>Soft water</u> -- Doesn't contain Ca⁺², Mg⁺², Fe⁺³ ions.
- <u>Softened</u> water -- metal cations in hard water are replaced by Na⁺.
- <u>Deionized water</u> -- cations are replaced by H⁺ and anions are replaced by OH⁻

Copyright © 2004 Pearson Prentice Hall, Inc.